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Abstract

An enthalpy fixed grid method is developed for modeling dendritic growth in an under-cooled binary alloy. The proposed numerical
method couples explicit finite difference solutions of equations expressing the conservation of enthalpy and solute to an iterative proce-
dure that enforces node by node consistency between enthalpy, solute, liquid fraction, and interface under-cooling. Calculations made
with the scheme, are consistent with previously reported work, agree well with limit analytical solutions, approach the correct steady-
state tip operating conditions, show grid size independence, are relatively free of grid anisotropy, and can be obtained with a low
CPU cost.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

If care is taken, it is possible to under-cool a liquid
below its equilibrium solidification temperature. When a
solid seed is placed in such an under-cooled melt, however,
solidification will be initiated. Due to crystal anisotropy, or
other perturbations in the system, the subsequent growth
of the solid from the seed will not be uniform and an equi-
axed dendritic crystal will form. The primary arms of the
crystal will be aligned with the preferred growth directions.
Stable growth of these arms is maintained through curva-
ture and kinetic under-cooling of the solid–liquid interface.

Tracking the evolution of the solid–liquid interface of a
crystal growing in an under-cooled melt is computationally
challenging. A wide range of methods have been proposed
in the literature [1–25]. The basic problem studied is the
heat conduction controlled growth of a pure material,
problems that involve fluid flow [3–6] and alloys [7–9] have
also been studied. Very broadly speaking, methods based
on standard numerical discretizations of the governing field
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equations can be split into two classes, Front Tracking
Methods and Order Parameter Methods.

Front tracking methods can use deforming grids that
evolve with the solid–liquid interface [10]. Typically, how-
ever, they employ field solutions on a fixed Eulerian back-
ground mesh and continuously reconstruct a Lagrangian
description of the solid–liquid interface. This interface is
tracked in time by explicitly satisfying suitable discrete
forms of the interface heat balance condition. The recon-
structed interface cuts through the elements of the back-
ground mesh and this information is used to modify the
background field solution. This can be done by modifica-
tion of the finite difference [5,11,12] or finite element
approximations [8,13] in the vicinity of the interface, or
through the distribution of interface heat sources [14].

Order parameter methods characterize the position of
the interface by an order parameter 0 6 / 6 1. A nodal
value of /P = 0 indicates the node point P is the solid, a
value /P = 1 indicates that P is in the liquid, and, a value
0 < /P < 1 indicates that P is in the vicinity of the solid–
liquid interface. Values of the nodal order parameter are
used to define a solidification heat source in the energy bal-
ance equation. They can also be used to evaluate interface
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Nomenclature

C concentration
C0 initial concentration
c volumetric specific heat (J/m3 K)
D mass diffusivity (m2/s)
d0 capillary length
f liquid fraction
H enthalpy (J/m3)
K thermal conductivity (J/m s K)
k partition coefficient
L cavity width
Le Lewis number (al/Dl)
M dimensionless liquidus slope
m liquidus slope (K)
T temperature (K)
Tf fusion temperature (K)
Tm equilibrium temperature (K)
t time (s)
V concentration potential
v interface speed
W interface width

Greek symbols

a, b smear factors
al liquid thermal diffusivity (m2/s)

as solid thermal diffusivity (m2/s)
/ order parameter
D space step
DH volumetric latent heat (J/m3)
Dt time step
e anisotropic strength
c surface tension (N/m)
j curvature (1/m)
k noise strength
l kinetic mobility (m/s K)
h interface angle

Subscripts

l liquid value
s solid value
P node point
i, j node point

Superscripts

+ liquid side of interface
� solid side of interface
i interface value
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proprieties such as position and curvature. Typically the
application of these methods requires differential equations
to describe both the conservation of energy and the evolu-
tion of the order parameter. The key advantage of the
approach is that calculations can be carried out on a fixed
grid. Three popular order parameter methods are ‘‘level-
set”, ‘‘phase-field”, and ‘‘enthalpy”.

In level-set methods [15,16], the order parameter (level-
set function) is usually defined as a distance function from
the solid–liquid interface and is evolved with a pure advec-
tion transport equation. The velocity field for this advec-
tion is constructed to account for both the interface
under-cooling and interface heat balance. In a similar fash-
ion to front tracking approaches the level-set function is
used to modify discretizations and source terms in the
vicinity of the solid–liquid interface. In contrast to front
tracking, however, the balance conditions on the interface
are not explicitly satisfied, rather these conditions are
implicitly accounted for through the update of the level-
set function.

In phase-field methods [3,4,7,17–19] the physically sharp
solid–liquid interface is modeled as a diffusive interface of
finite width, W. To retain fidelity with the sharp-interface
model this width should be chosen, according to the
‘‘thin-interface” analysis of Karma and Rappel [17], to be
smaller than the microstructure morphology but larger
than the capillary length scale d0 (�10�9 m for metals)
[7]. The order parameter is defined to vary smoothly across
the interface and used to construct an energy functional
that accounts for the interface under-cooling and heat bal-
ance. Then, through the minimization of the energy func-
tional, an evolution differential equation for the order
parameter is obtained. The accuracy of a numerical calcu-
lation of the phase-field equations requires that the grid
size, in the vicinity of the interface, be at the scale of the
interface width. Even with the ‘‘thin-interface” analysis
[17] this could make calculations expensive; a situation that
can be significantly relieved by employing dynamic adap-
tive gridding techniques [18].

There is an alternatively route to a phase-field evolution
equation that does not require the minimization of an
energy functional. In this approach, the order parameter
is viewed as a ‘‘level-set” function and used to calculate
expressions for the interface curvature and normal velocity;
direct substitution of these expressions into the interface
conditions results in an evolution equation for / [19]. This
concept of combining ideas between the phase-field and
level-set methods is an emerging research theme, Tan and
Zabaras [20] has utilized the concept of a diffuse interface
in constructing a level-set method for dendritic growth
and recently Sun and Beckermann [21] has uncovered
extensive commonalities between the approaches.

Perhaps the most basic order parameter method is the
well known enthalpy method. In this approach a single
energy conservation equation for the entire solution
domain, solid and liquid, is written in terms of the enthalpy
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– the sum of sensible and latent heats. Solution can be
made on a fixed space grid and the interface tracked by
use of the liquid fraction f, a parameter that retains the fea-
ture of an order parameter, i.e., in the vicinity of the phase
change 0 6 f 6 1. The enthalpy method is successful at
solving basic solidification problems where no under-coo-
lings are present and the equilibrium solidification temper-
ature is a fixed constant [26,27]. There is no reason,
however, why this popular and relatively easy to use
method can not be applied to solve problems of dendritic
growth [6,9,22–25]. The first to try this was Tacke and
co-workers [22,23] who employed an explicit finite differ-
ence discretization of the enthalpy equation, incorporating
curvature under-cooling – the Gibbs–Thomson condition –
through treating the liquid fraction as a level-set function.
Tacke investigated the growth of an equiaxed crystal in an
under-cooled pure melt under the condition of diffusion
dominated heat transport. Recenly, Pal et al. [6] has
extended the approach to account for a combination of
advective-diffusive transport. This later work uses implicit
time stepping and calculates the interface curvatures with
methods form the cellular automata literature. Closely
related work by Chatterjee and Charkraborty [25] com-
bines the enthalpy method with lattice Boltzmann methods
to simulate dendritic growth of a pure material in the pres-
ence of a flow field.

The work of Tacke and co-workers [22,23], Pal et al. [6],
and Chatterjee and Charkraborty [25], clearly show the
potential for using an enthalpy method for modeling den-
dritic growth. A drawback in the current enthalpy
approaches however, is that the crystal anisotropy is not
explicitly imposed; rather the anisotropy is implicitly con-
trolled by the finite-difference grid. This means, on a stan-
dard two-dimensional finite-difference grid that crystal
morphologies are restricted to fourfold symmetry and the
primary arms are aligned with the grid axes. In addition,
all the previously reported enthalpy dendritic models only
consider pure melts. The objective of this paper is to fur-
ther refine the enthalpy method for the modeling of den-
dritic growth. The key modifications are (1) an explicit
specification of the crystal anisotropy, (2) extension to
account for growth in both pure and binary alloy melts,
and (3) the introduction of numerical devices that reduce
the non-physical effect of grid anisotropy. Preliminary
information on this modified approach has been presented
in short conference proceedings [9,24]. This full paper pro-
vides an opportunity to detail a complete derivation and
discussion of the approach, introduce new devices designed
to reduce grid anisotropy, and present a comprehensive
range of verification examples.

2. The sharp-interface model

An under-cooled binary alloy is contained in an insu-
lated, two-dimensional, square cavity of side length L. Ini-
tially the alloy has a uniform concentration C = C0 and
temperature Tu < Tm = Tf + mC0; Tm is the equilibrium
temperature, Tf the fusion temperature of the pure solvent,
and m is the (assumed linear) slope of the liquidus line. At
time t = 0 a solid seed, that initiates solidification and crys-
tal growth, is placed at the center of the cavity. For simplic-
ity of development it will be assumed that there is no
change in the volumetric specific heat c across the solid–
liquid interface.

2.1. Thermal field

The thermal field is governed by the heat conduction
equations

oT
ot
¼ r � ðasrT Þ; in solid; and

oT
ot
¼ r � ðalrT Þ; in liquid ð1Þ

where a is the thermal diffusivity and the subscripts s and l
refer to the solid and liquid respectively. On the solid–li-
quid interface the heat balance gives

KsrT� � n� K lrTþ � n ¼ DHv ð2Þ

where n is the interface normal pointing into the liquid, DH

is the volumetric latent heat, K is thermal conductivity, v is
the interface speed in the normal direction, the superscript
� indicates evaluation on the solid side, and + indicates
evaluation on the liquid side.

2.2. Solutal field

The solutal field is governed by the diffusion equations

oCs

ot
¼ r � ðDsrCsÞ; in solid; and

oCl

ot
¼ r � ðDlrClÞ; in liquid ð3Þ

where D is the mass diffusion. On the solid–liquid interface
the partitioning of the solute gives

Cs ¼ kCl ð4Þ

where k is the partition coefficient, and the solute balance
gives

DsrCs � n� DlrCl � n ¼ Clð1� kÞv ð5Þ
2.3. Interface under-cooling

The equilibrium solidification temperature of the liquid
alloy solidifies is Tm = Tf + mC0. Due to the interface cur-
vature and speed, and the solute partitioning and redistri-
bution, however, the solid liquid interface is under-cooled
to the temperature

T i ¼ T m �
cðhÞT m

DH
j� mðC0 � Ci

lÞ �
v

lðhÞ ð6Þ

where the superscript i indicates evaluation at the interface.
The second term on the right of (6) is the Gibbs–Thomson
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term accounting for decrease in interface free energy due to
curvature; c(h) is the anisotropic surface tension, h is the
angle between the interface normal (pointing from solid
to liquid) and the x-axis, and j is the interface curvature
(positive when the center of curvature is in the solid).
The third term on the right of (6) accounts for the fact that,
due to solute partitioning and transport, the liquid solute
value at the interface will differ from the initial solute con-
tent of C0; this term is referred to as the solutal under-cool-
ing. The last term on the right of (6) is the kinetic under-
cooling where l(h) is the anisotropic kinetic mobility.
3. The enthalpy formulation – as a diffuse interface model

3.1. Derivation

Eqs. (1)–(6), referred to as the sharp-interface model, is
the basis of front tracking methods for simulating dendritic
growth. The distinct features are separate transport equa-
tions for the solid and liquid regions, (1) and (3), coupled
through balance conditions, (2) and (5), applied at the
sharp solid–liquid interface. In contrast, models based on
an order parameter develop transport equations valid
throughout the domain and implicitly capture the balance
conditions through the evolution of the order parameter.
In phase-field models [19] this is achieved through assign-
ing a finite thickness to the solid–liquid interface across
which variables and properties change smoothly. This con-
cept of a diffuse interface can be used to arrive at an
enthalpy based model of dendritic crystal growth. In this
case the key property is a liquid fraction which changes
smoothly across the interface, from f = 0 in the solid to
f = 1 in the liquid. The liquid fraction takes the role of
the order parameter and is used to develop smooth interpo-
lations in variables and properties from the solid into the
liquid. In this way, three new field variables are introduced.
The volumetric enthalpy – the sum of sensible and latent
heats – is defined as

H ¼ cT þ f DH ; ð7Þ

a mixture concentration is defined as

C ¼ ð1� f ÞCs þ fCl; ð8Þ

and – following the initial idea of Crowley and Ockendon
[28] – a concentration potential is defined as

V ¼ C
f ð1� kÞ þ k

ð9Þ

Further, in the diffusive interface, points that have a liquid
fraction strictly in the range 0 < f < 1, the liquid fraction is
treated as a level-set function so that in calculating the
interface temperature from (6) the curvature can be calcu-
lated as [29]

j ¼ r � rf
jrf j

� �
¼

f 2
y fxx � 2f xfyfxy þ f 2

x fyy

ðf 2
x þ f 2

y Þ
3=2

ð10Þ
(fx = of/ox, fxy = o2f/oxoy, etc.), the normal velocity as [19]

v ¼ � 1

jrf j
of
ot

ð11Þ

and the interface orientation as

h ¼ tan�1 fx

fy

� �
ð12Þ

The definitions in (7)–(9) allow for a single domain for-
mulation comprising equations for conservation of
enthalpy

oH
ot
¼ rðKrT Þ ð13Þ

where K = (1 � f)Ks + fKl and the temperature is related to
the enthalpy through

T ¼

DH�L
c ; f ¼ 0

T i; 0 < f < 1

DH
c ; f ¼ 1

8><
>: ð14Þ

and conservation of solute

oC
ot
¼ rðDrV Þ ð15Þ

where the potential V is related to the concentration C

through (9) and D = [k(1 � f)Ds + fDl]. Note with the use
of (8) and (9) in the solid (f = 0) and in the liquid (f = 1)
domains (15) will reduce to sharp-interface diffusion equa-
tions given in (3).

Some comments are made.

1. In the development of the single domain equations the
only requirement of the diffuse interface is to ensure a
smooth continuity of variables and properties through-
out the problem domain. In particular, the thickness
of the interface has not been explicitly specified and, in
fact, can be assumed to be arbitrarily small. This feature
differs from phase-field models [3,4,7,17–19] and recent
diffuse interface level-set methods[20] where the thick-
ness of the interface is an explicit and key parameter
entering in the governing equations.

2. In the limit of a vanishing interface thickness, the con-
centration potential V(�) ? V(+), i.e., it has the same
behavior as the temperature T.

3. Finally, for completeness it is noted that, although the
convergence of the enthalpy formulation to the sharp-
interface model under a vanishing interface thickness
has been shown for the case of a pure material and no
under-cooling, see Crank [27], a formal convergence
treatment for the more general model is still open. In
this work a rigorous convergence treatment is omitted
but a demonstration that, in a one-dimensional domain,
a numerical solution of the single domain system pro-
vides a close match to a recent analytical solution of
the sharp-interface equations [30] is presented.
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Fig. 1. Control volume and grid arrangement.
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3.2. Dimensionless form

With the following dimensionless variables and scalings

T � ¼ T � T f � mC0

DH=c
; C� ¼ C

C0

; M ¼ � cm
DH

;

x� ¼ x
d0

; t� ¼ alt

d2
0

; j� ¼ d0j; Le ¼ al

Dl

ð16Þ

where the superscript (*) represent dimensionless variables
and d0 is the capillary length scale, the dimensionless form
of the single domain equations are

oH �

ot�
¼ r�ðK�r�T �Þ ð17Þ

oC�

ot�
¼ r�ðD�r�V �Þ ð18Þ

where r� � o
ox�,

o
oy�. In these equations the appropriate

dimensionless quantities and properties are defined as
H* = T* + f, C� ¼ fC�l þ ð1� f ÞC�s , V � ¼ C�

f ð1�kÞþk K� ¼
f þ ð1� f Þ as

al
and D� ¼ 1

Le f þ kð1� f Þ Ds

Dl

h i
. Within the

interface 0 < f < 1 the dimensionless temperature, derived
from (6) is given by

T i� ¼ �j�
dðhÞ
d0

þMC0ð1� V �Þ þ ca
DHlðhÞd0

1

jr�f j
of
ot�

;

0 < f < 1 ð19Þ

where dðhÞ ¼ cðhÞT mc
DH2 is the anisotropic capillary length. An

often used fourfold symmetry model for this value is

dðhÞ ¼ d0ð1� 15e cos 4hÞ ð20Þ

where e is the anisotropic strength.

4. Numerical solution of enthalpy formulation

4.1. The finite difference equations

In the following, a numerical solution is developed for
Eqs. (17)–(20). The problem domain is a two-dimensional
box with insulated sides. Initially the box contains an
under-cooled liquid binary alloy and solidification is initi-
ated by placing a solid seed at the equilibrium temperature
at the center of the box. Due to symmetry, the problem
domain will be restricted to the positive quadrant of the
domain. Further, throughout the subsequent analysis, for
simplicity of nomenclature, the � superscripts, indicating
a dimensionless quantity, will be omitted.

The domain is covered by a grid of square cell centered
control volumes, see Fig. 1. Nodes are arranged in rows,
numbered (bottom to top) i = 1, . . . ,n, and columns, num-
bered (left to right) j = 1, . . . ,n. The initial nodal setting is a
fixed solute concentration C0, a fixed under-cooling Tu < 0
and a liquid state (f = 1). The solution (growth of a den-
drite) is initiated by setting the left hand corner node
(1,1) to a solid state (f = 0), a temperature T = 0, and con-
centration C = kC0. In addition, a small amount of solid is
placed in the immediate neighboring cells [(1,2), (2, 1) and
(2,2)] by reducing their nodal values to f = 0.99. This is suf-
ficient to initiate the growth of a dendrite. Within a time
step the calculation of this growth is as follows.

The fully explicit schemes of (17) and (18) are

Hnew
i;j ¼ Hi;j þ

Dt

D2
½KwðT i;j�1 � T i;jÞ þ KsðT i�1;j � T i;jÞ

þ KnðT iþ1;j � T i;jÞ þ KeðT i;jþ1 � T i;jÞ� ð21Þ

Cnew
i;j ¼ Ci;j þ

Dt

D2
½KwðV i;j�1 � V i;jÞ þ KsðV i�1;j � V i;jÞ

þ KnðV iþ1;j � V i;jÞ þ KeðV i;jþ1 � V i;jÞ� ð22Þ

where Dt is the time step, D is the space step, and the lower
case subscripts w(est), e(ast), n(orth), and s(outh) indicate
the face values for the control volume with center node
ði; jÞ. Note, unless otherwise stated, to ensure stability,
the time step is set to Dt = 0.1D2. The values of the inter-
face conductivities and diffusivities are calculated as Kw ¼

fi;j�1þfi;j

2
þ 1� fi;j�1þfi;j

2

� �
as

al

h i
and Dw ¼ 1

Le
fi;j�1þfi;j

2
þ k
�

1�
h

fi;j�1þfi;j

2

�
Ds

Dl

i
, etc. In all the results presented below, how-

ever, it is assumed that as = al and Ds = 0, the Scheil
assumption.

4.2. Solution in a time step

Eqs. (21) and (22) are solved (note no iteration is
required) to update the nodal enthalpy and mixture con-
centration fields. The resulting fields are then used in a
point by point iteration to extract the nodal values of V,
T and f that are needed in the next time step. The steps
in this iteration are as follows
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1. With fixed values of new time nodal enthalpy H new
i;j and

concentration Cnew
i;j in hand, the nodal field is swept.

2. If at node ði; jÞ, the current value of the liquid fraction is
strictly in the range 0 < f r

i;j < 1
– the curvature j, interface speed, and interface orien-

tation h are calculated from finite difference approxi-
mations of dimensionless versions of (10)–(12).

– an approximation for the under-cooling Ti is
obtained from (19)

– the liquid fraction is updated as
f rþ1
i;j ¼ f r

i;j þ xðH new
i;j � f r

i;j � DHÞ ð23Þ
under the constraint that fi,j remains in the bounds
[0,1]; the value x � 0.5 is an underrelaxtion.

– the r + 1 update for the temperature is calculated as
T newrþ1

i;j ¼ T i, and
– the r + 1 update for the concentration is

V newrþ1

i;j ¼ Cnew
i;j

f rþ1
i;j ð1�kÞþk

.

3. If the current nodal liquid fraction is f r
i;j ¼ 1 or f r

i;j ¼ 0,
step 2 is omitted and updates of the temperature T newrþ1

i;j

and concentration potential V newrþ1

i;j are calculated
directly from the definitions H = T + f and V ¼ C

f ð1�kÞþk
respectively.

4. The iterative sweeping (r = 1,2,3, . . .) continues until a
minimum number of iterations is exceeded (r = 5) and
the largest nodal residual value resi;j ¼ Hnew

i;j � f r
i;j�

T newr

i;j falls below a tolerance (10�6 in the calculations
reported here).
4.3. Advancing the solidification

Following the calculation of updated (new time level) T,
V and f fields, there is one additional piece of bookkeeping
that needs to be undertaken before calculations at the new
time step can commence. The iterations outlined above are
set up so that solidification in a given computational cell
can only advance if the liquid in that cell is strictly
fi,j < 1. This requires that solidification be ‘‘seeded”, at
the appropriate time, in node volumes ahead of the advanc-
ing solid front. The appropriate time to switch is found by
searching the nodal field, at the end of each time step, to
locate nodes where solidification completed in the current
step, i.e., nodes where fi,j > 0 and f new

i;j ¼ 0. Then in each
of the eight neighboring cells to node ði; jÞ, if the current
liquid fraction fnb > 1 � d, where d is a very small value
(d = 0.001) indicating an essentially fully liquid state, its
liquid value is updated to fnb = 1 � d. The choice of the
eight neighboring cells is important because it helps to sup-
press any grid anisotropy, see discussion below.
4.4. Remedial steps

The nature of the calculation outlined above will restrict
the region where the liquid fraction is strictly in the limits
0 < f < 1 to a band of the discrete domain which is on
the order of one computational cell wide. Hence, although
in the enthalpy formulation no explicit thickness of the
interface is made, the practice creates a thickness that
scales linearly with the grid size. This differs from level-
set and phase-field methods, where the width of the inter-
face band may include a number of computational cells.
This ‘‘narrow band” feature of the enthalpy formulation
can lead to problems in calculating interface properties
from the nodal liquid fraction field, e.g., curvature [31];
problems that will not necessary be relieved by grid refine-
ment since the thickness of the interface scales with the grid
size. In this respect, an object of this paper is to introduce
‘‘ad-hoc” numerical devices that can lead to more reason-
able calculations of interface curvature and direction from
the thin band of interface information provide by an
enthalpy model.

The narrow band problem can be relieved by ‘‘smear-
ing” out its influence. One way this can be achieved is to
use an extended finite difference stencil to calculate the
liquid fraction derivatives used in the curvature (10), veloc-
ity (11) and direction (12) calculations. Finite difference
approximations of the derivatives at node ði; jÞ are con-
structed to include nodal values from the eight nearest
nodes. In this way derivatives in terms of single variable
are approximated as

fxi;j ¼
a fiþ1;jþ1�fiþ1;j�1

2D þ fi;jþ1�fi;j�1

2D þa fi�1;jþ1�fi�1;j�1

2D

1þ2a
; . . . ; ð24Þ

fyyi;j
¼

a
fiþ1;j�1�2f i;j�1þfi�1;j�1

D2 þa
fiþ1;j�2f i;jþfi�1;j

D2 þa
fiþ1;jþ1�2f i;jþ1þfi�1;jþ1

D2

1þ2a
; . . . ;

ð25Þ
where a is a user defined value. The cross derivative is cal-
culated by the standard second order approximation

fxyi;j
¼ fiþ1;jþ1 � fiþ1;j�1

4D2
þ fi�1;j�1 � fi�1;jþ1

4D2
ð26Þ

If a = 0, (24) and (25) give the standard second order
approximations involving no more than two neighboring
nodes. A stetting of a = 0.25, used in this work, and consis-
tent with Tacke [22], however, extends the approximation
to all eight nearest neighbors.

Smearing can also be induced by constructing a
weighted averaged liquid fraction field over the nearest
neighboring cells

gi:j ¼ 1�
X

nb

bnb

 !
fi;j þ

X
nb

bnbfnb; ð27Þ

subject to the conditions
P

nbbnb ¼ 1, and bnb P 0. It is
emphasized and stressed that this construct is only used
in calculating the front curvature, normal and velocity, in
all other calculations the nodal liquid fraction fi,j must be
used. In the current work, advantage is made of the fact
that the crystal grows from the lower left to the upper right
to invoke a simpler version of (27), viz.,

gi:j ¼ ð1� bÞfi;j þ bfiþ1;jþ1 ð28Þ
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5. Verification

5.1. Comparison with analytical solution

Under no curvature or kinetic under-cooling, a semi-
infinite one-dimensional geometry, and boundary condi-
tions oCs

ox ¼ 0, oT
ox ¼ 0 at x = 0 and Cl ? 1, T ? Tu < 0 as

x ?1, the sharp-interface model (1)–(6) admits an analyt-
ical similarity solution [30]. The similarity solution is real-
ized through the fact that under the above conditions the
values of the concentration Ci and temperature Ti at the
interface remain constant through time. With this feature,
the insulated condition at x = 0 immediately leads to the
solid phase solutions T = Ti and Cs = kCi. From [30] tem-
perature and concentration solutions in the liquid phase
can be written as

T ¼ T u þ ðT i � T uÞ
erfc x

2
ffi
t
p

� �
erfcðkÞ ð29Þ

C ¼ 1þ ðCi � 1Þ
erfc x

ffiffiffiffi
Le
p

2
ffi
t
p

� �
erfc k

ffiffiffiffiffi
Le
p� � ð30Þ

and the time dependent position of the planer solid–liquid
interface written as

s ¼ 2k
ffiffi
t
p

ð31Þ

The unknown values Ci, Ti and k are found from the simul-
taneous solution of the equation of the under-cooling, the
interface heat balance, and the interface mass balance

T i �MC0ð1� CiÞ ¼ 0

k
ffiffiffi
p
p

ek2

erfcðkÞ � ðT i � T uÞ ¼ 0

ð1� kÞCik
ffiffiffiffiffi
Le
p ffiffiffi

p
p

ek2Leerfcðk
ffiffiffiffiffi
Le
p
Þ � ðCi � 1Þ ¼ 0

ð32Þ

Note the equivalence Vi � Ci at the solid–liquid interface.
Clearly the solution obtained form (29)–(32) cannot be

used to check the treatment of the curvature and kinetic
terms in the proposed enthalpy solution. It is an excellent
vehicle, however, for checking two basic and critical fea-
tures of the proposed scheme, viz., the solid reseeding treat-
ment to advance the solidification and the single domain
heat and solute transport treatment realized through the
introduction of the enthalpy H and the concentration
potential V. Fig. 2, compares predictions obtained with
the proposed enthalpy method with the analytical solution
for the case when k = 0.1, MC0 = 0.1, Tu = �0.5, and
Le = 1.0; a space step of D = 0.5 and a time step of
Dt = 0.1 is used. The agreement with profile and front
movement predictions is excellent, in particular the front
movement, recorded at every time step, is indistinguishable
from the analytical solution. This result strongly indicates
the mass and enthalpy conservation in the proposed
approach.
5.2. Comparison with alternative models

Fig. 3 shows the enthalpy prediction for the equiaxed
dendrite in pure material at dimensionless time t = 37,000
with initial under-cooling Tu = �0.55 and anisotropic
strength e = 0.05 in (20). In the calculation, a grid size of
D = 2.5 (1/4 box size 800 � 800) and a time step of
Dt = 0.625 are used, the smearing parameters are set at
as a = 0.25 and b = 0.25 respectively, and a pure material
is simulated by setting the partition coefficient k = 0. The
conditions in Fig. 3 match those used by Kim et al. [16]
to compare the predictive performance between phase-field
and level-set methods. When compared with the results of
Kim – Fig. 2 in Ref. [16] – a qualitatively close match can
be observed between the enthalpy predictions and those
obtained with the alternative models. The tip position
and radius predictions are very close. The only noticeable
discrepancy is at the roots of the dendrite arms; the
enthalpy predictions show a slightly sharper curvature.
The quality of the tip prediction is confirmed by noting
that the dimensionless tip velocity approaches the steady-
state velocity predicted with the microscopic solvability
theory; see insert in Fig. 3 and more complete discussion
on microscopic solvability below.



Fig. 3. Enthalpy predicted dendrite shape at t = 37,000, Tu = �0.55,
e = 0.05, k = 0, D = 2.5 (1/4 box size 800 � 800) Dt = 0.625, a = 0.25 and
b = 0.25. Compare with Fig. 2 in ref [16]. Insert shows change of tip
velocity with time.

830 V.R. Voller / International Journal of Heat and Mass Transfer 51 (2008) 823–834
5.3. A grid refinement study

An initial grid refinement analysis is made for a problem
almost identical to the shown in Fig. 3; the difference is a
larger under-cooling Tu = �0.65 and a simulation end time
of t = 6000. Grid sizes from 4 to 2.5 in a 1/4 box size
400 � 400 are tested. For this, close to doubling of the grid
size, the results, Fig. 4, are almost identical.
Fig. 4. Grid study. Enthalpy predicted dendrite shape at t = 6,000,
Tu = �0.65, e = 0.05, k = 0, a = 0.25 and b = 0.25. Grid sizes of D = 2.5,
3.25 and 4 in a 1/4 box size of 400 � 400 are compared.
5.4. Comparison with microscopic solvability theory

The growth of an equiaxed dendrite is driven by the
thermal gradient in the liquid, decreasing in the direction
of the normal. As a dendrite tip advances, its direction
determined by the anisotropic surface tension (ch), the
value of the local thermal gradient increases accelerating
the growth of the tip. This unstable behavior is offset by
the fact that an advancing tip is associated with a larger
value of curvature leading to a larger local under-cooling
in the vicinity of the tip. In turn, the larger local under-
cooling reduces the local thermal gradient and the rate of
advance of the tip. As the process continues ‘‘equilibrium”

is reached between this growth and retardation forcing and
the tip advance approaches a steady-state velocity. For a
given under-cooling and value of (ch) the steady-state tip
velocity can be predicted from the so called ‘‘microscopic
solvability theory”, see Udaykumar et al. [12] for a com-
pact discussion. Fig. 5 plots the change of dimensionless
tip velocity with time for the growth of the equiaxed crystal
shown in Fig. 4; the velocity for the grid sizes of 4, 3.25,
and 2.5 are reported. This result clearly shows that the
enthalpy predicted tip velocity does approach the steady-
state microscopic solvability velocity, the solid line in
Fig. 5 (taken form Ref. [16]). The result also confirms the
small grid dependence, across the chosen range, illustrated
in the time snap shot of Fig. 4. It is noted, however, that if
smaller grid sizes are used the predicted tip velocity slips
below the microscopic solvability limit. This is attributed
to the ‘‘narrow band” problem [31] discussed above and
indicates that the smearing remedial scheme proposed to
elevate this problem may only work across a range of grid
sizes. Essentially, even with a smearing remedial scheme in
place, the choice of too fine a grid size may lead to a poor
estimate of the curvature.

5.5. Grid anisotropy

A critical problem with any fixed grid method is grid
anisotropy where the layout and design of the grid influ-
ences the preferred growth direction. Indeed early [22,23]
and some recent enthalpy models [6,25] rely on the grid
to promote the preferred growth direction of the crystal.
In the current work the preferred growth direction is con-
trolled through the specification of the anisotropic surface
energy in (20). Grid anisotropy, however, may still be pres-
ent in the predicted results. The level of grid anisotropy can
be quantified by two tests. In the first test, the run of Fig. 4
is repeated setting the anisotropic strength term in (20) to
e = 0. With this setting the initial seed should grow into
and maintain the shape of a circle. Fig. 6 shows the predic-
tion of the crystal at dimensionless t = 6000 and space step
D = 4, under this condition; the prediction of the close to
circular shape indicates a low grid anisotropy.

The second test for grid anisotropy is more stringent.
The run of Fig. 4 with D = 2.5 is repeated using a aniso-
tropic capillary length defined by
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Fig. 5. Dimensionless tip velocity with time for grids of D = 4, 3.75 and 2.5; conditions as in Fig. 4.

Fig. 6. Growth with zero anisotropic strength e = 0; all other conditions
as in Fig. 4; dashed line theoretical circle, solid crystal prediction.

Fig. 7. Comparison between dendrite predictions, dashed line preferred
growth alighted with grid, full line preferred growth at 45� to the grid.
D = 2.5. Conditions as in Fig. 4 with the exception of a setting of b = 0.05
for the 45� case.
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dðhÞ ¼ d0ð1� 15e cos 4ðhþ p=4ÞÞ ð33Þ

with the anisotropic strength reset to e = 0.05. In this case
the same fourfold symmetry crystal will grow, but its arms
will be aligned at an angle of 45� to the direction of the fi-
nite difference grid. The predicted result, crystal shape at
time t = 6000, is reported in Fig. 7 by twisting the results
through 45� and comparing with the original shape predic-
tion of Fig. 4. The comparison, for the case shown, is excel-
lent. Note, however, that in Fig. 7 the smear parameter in
(39) is b = 0.05 as opposed to the value of b = 0.25 used
when the preferred growth is aligned with the grid.

6. Results

Following the verification of the proposed enthalpy
method for dendritic growth a number of results are
presented.



Fig. 9. Dendritic solidification in an alloy effect of Lewis number on shape
at time t = 6000. Conditions as in Fig. 4 but with partition k = 0.15 and
MC0 = 0.1. D = 3.333 (Le = 0.1, 1, 10 and 100) D= 2 (Le = 100). Time
step is chosen so that Dt = 0.1LeD2 (while Le < 1) or Dt = 0.1D2 otherwise.
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6.1. A binary alloy

The growth of a crystal in a binary alloy is simulated,
the settings are surface anisotropic strength e = 0.02, initial
under-cooling Tu = �0.55, partition coefficient k = 0.15,
MC0 = 0.1 and a Lewis number Le = 20. A grid size of
D = 2.5 is used in a 1/4 box of 160 � 160, calculations
are carried out to time t = 30,000. Fig. 8 shows the pre-
dicted dendritic shape and the liquid concentration con-
tours; the insert to the right shows the concentration
profiles along the x-axis and the line x = y. Consistent with
the one-dimensional analytical solution there is only lim-
ited micro-segregation in the solid and, as indicated by
the concentration profiles along x = 0 and y = x (see
insert), significant solute ‘‘pile up” at the solid–liquid inter-
face. The insert to the left shows shape predictions with
Le = 100 (a number approaching metal alloys) at
t = 50,000 and D = 1.875.

The effect of Lewis number is further shown by the series
of predicted dendrite shapes in Fig. 9. In this prediction the
settings are identical to those used in Fig. 4, with the addi-
tion of a non-zero partition number k = 0.15. In this figure
the simulation time t = 6000, is identical for each dendrite;
the size and shape is controlled by the Lewis number. If the
Lewis number is large, as seen in metal systems, the con-
centration boundary layer is thin, resulting in a solute
pileup along the solid–liquid interface, a low interface
under-cooling, and a slower growth. When the Lewis
number approaches zero, arrived at by increasing the liquid
Fig. 8. Dendritic growth in a binary alloy, concentration contours in
liquid and concentration profiles along (A) y = x and (B) x = 0 at
dimensionless time t = 30,000. Conditions, e = 0.02, Tu = �0.55, k = 0.15,
Le = 20, D = 2.5 is used in a 1/4 box of 160 � 160. Insert shows results for
Le = 100 at t = 50,000 with D = 1.875.
diffusivity, any solute rejected on solidification is rapidly
carried away into the bulk and growth approaches that
seen in the pure material case of Fig. 4.

6.2. Secondary arms

To obtain secondary arms noise needs to be introduced
into the calculation. Following Pal et al. [6] thermal noise
can be introduced by allowing for random fluctuations in
dimensionless latent heat, i.e., use the spatial field

DHðx; yÞ ¼ ð1þ kRNDðx; yÞÞ ð34Þ

where RNDðx; yÞ is a random number in [0, 1], the function
is symmetric, RNDðx; yÞ ¼ RNDðy; xÞ, and k < 1 is a scal-
ing. Fig. 10 shows the calculated dendrite shape at dimen-
sionless time t = 12,000, the settings are as in Fig. 4 but
with a lower under-cooling Tu = �0.7. The noise scaling
is set at k = 0.1 and a step size of D = 4 in a 1/4 box of
1200 � 1200 is used. The plot in Fig. 10 clearly shows the
initiation and growth of secondary arms.

6.3. Grain growth

The proposed method can be used to model the growth
of multiple grains. This is achieved by using a full box sim-
ulation 800 � 800 and imposing periodic conditions. In the
simulation presented, in Fig. 11, five grains are seeded in
the initially under-cooled melt, each with a different pre-
ferred growth direction. In a full box the directional smear-
ing of the liquid fraction fields used to calculate the
curvature (28) needs to be replaced by the more general



Fig. 11. Simulation of grain growth at time t = 4000 with D = 2.5. Basic
conditions as in Fig. 4 but a full box (800 � 800) domain is used and
smearing function is (38) with b = 0.1.

Fig. 10. Inception of secondary arms from thermal noise at time
t = 12,000. Settings as Fig. 4 but with Tu = �0.7 and a thermal noise
scaling in (34) of k = 0.1.
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approach of (27); a setting of b = 0.1 is used. The grains at
time t = 4,000 clearly show that the competition between
the grains modifies the growth and shape of the dendrite
arms.
6.4. CPU

The proposed method can produce sound predictions
within very limited CPU time. On a modest windows based
lap top the prediction of the D = 4 dendrite in Fig. 4 takes
on the order of 1 minute of CPU time. Calculations with
binary alloys and large Lewis number (e.g., Fig. 8), can
take 1–3 h.

7. Conclusions

A fixed grid enthalpy like method has been developed
for the simulation of dendritic growth in an under-cooled
binary alloy melt. This is the first time that an enthalpy
method has been used to model dendritic growth in a bin-
ary alloy with explicitly imposed crystal anisotropy. In the
development of the method care has been taken to fully
verify the proposed approach and point out and explain
potential deficiencies. In basic operation the proposed
approach can predict dendrite shapes that are consistent
with previous results, approach the correct – theoretical –
steady-state behavior, show reasonable grid independence,
and are relatively free of grid anisotropy. The method can
be readily extended to account for binary alloys and the
presence of multiple grains. A potential weakness in the
method is the loss of resolution is calculating interface cur-
vatures when the grid size decreases below the size of the
expected tip radius. Mechanisms that smear out the liquid
fraction field in the calculation of interface curvature will
reduce this problem. A real strength of the method is its
low computer cost released through the explicit scheme
time integration and limiting iterations to the narrow band
of nodes in the phase change region. This feature allows the
proposed method to predict physically feasible dendritic
morphologies for a very modest computer cost.

Further work will focus on refining the curvature calcu-
lations and accounting for additional phenomena, e.g.,
effects of electromagnetic fields. Closely related work is also
underway to adopt the enthalpy method developed here to
handle problems where an under-cooling is not applied but
develops, as a result of constitutional under-cooling, during
the solidification, see Ref. [32].
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